

We create a factor tree to find all of the prime factors of 60 . We begin by factoring 60 into 6×10.

Next, we factor 6 into 2×3 and 10 into 2×5. We circle each of the prime factors at the bottom of the tree.

Since there are no composite numbers left to factor, we are finished! The prime factorization of 60 is $2 \times 3 \times 2 \times 5$.
We generally order the factors from least to greatest: $2 \times 2 \times 3 \times 5$. We usually write prime factorizations using exponents: $2^{2} \times 3 \times 5$.

We check that the product equals 60 :
$2^{2} \times 3 \times 5=2 \times 2 \times 3 \times 5=60$.
Note that we could have begun by factoring 60 into $2 \times 30,3 \times 20,4 \times 15,5 \times 12$, or 6×10. No matter how we begin our factor tree, we will always end up with the same prime factorization!

PRACTICE

Fill in the missing numbers in each factor tree below to determine the prime factorization of each number.
69.

$110=$ \qquad

Draw a factor tree to help you determine the prime factorization of each PRACTICE number below. Order the primes from least to greatest and use exponents for repeated factors, as in the example on the previous page.

71. $140=$ \qquad 72. $72=$ \qquad
72. $196=$ \qquad 74. $465=$ \qquad

Abstract

Draw a factor tree to help you determine the prime PRACTICE factorization of each number below. Order the primes from least to greatest and use exponents for repeated factors.

75. $600=$ \qquad
76. $525=$ \qquad

PRACTICE

Use the prime factorizations you found above to help you determine the prime factorization of each number below.
77. $1,800=$ \qquad 78. $1,050=$ \qquad
79. $6,000=$ \qquad 80. $5,250=$ \qquad
\qquad
81. $300=$
82. $105=$ \qquad

We use division and our divisibility tests to look for factors of 127.
7 is not an even digit, so 127 is not divisible by 2.
$1+2+7=10$ is not a multiple of 3 , so 127 is not divisible by 3 .
Since $4=2 \times 2$, every number that has 4 as a factor also has 2 as a factor. 127 is not divisible by 2 , so 127 is not divisible by 4 .

Similarly, every composite number has at least one prime factor. So, we only need to check for prime factors!
127 does not end in 0 or 5 , so 127 is not divisible by 5 .
$127 \div 7$ has remainder 1 , so 127 is not divisible by 7 .
$127 \div 11$ has remainder 6 , so 127 is not divisible by 11 .
$127 \div 13$ has remainder 10 , so 127 is not divisible by 13 .
Then, since $13 \times 13=169$, any number that is larger than 13 has to be multiplied by a number that is smaller than 13 to get 127 .

So, we don't need to check any more primes.
The only factors of 127 are 1 and 127.
Therefore, 127 is prime, and the prime factorization of 127 is just 127.

PRACTICE

Write the prime factorization of each number on the line that follows. Order the primes from least to greatest, and use exponents for repeated factors.
83. $87=$ \qquad
85. $441=$ \qquad
87. $406=$ \qquad 88. $357=$ \qquad
86. $910=$ \qquad

