Fill in the missing numbers in the boxes below.

$\boxed{26}+\boxed{65}=\boxed{91}$	$\boxed{65}+\boxed{26}=\square$
$\boxed{91}-\boxed{26}=\square$	$\boxed{91}-\boxed{65}=\square$

Since 26 plus 65 is 91 , we know 65 plus 26 is also 91. So, if we take away 26 from 91, we are left with 65, and if we take away 65 from 91, we are left with 26.

$$
\begin{array}{ll}
\boxed{26}+\boxed{65}=\boxed{91} & \boxed{65}+\boxed{26}=69 \\
\boxed{91}-26=65 & \boxed{91}-65=26 \\
\hline
\end{array}
$$

Fill the empty boxes in each problem below so that each uses the same three numbers to make four different statements.

39. $\boxed{88}+44=\square$

40.

41. $\quad 39+\square=\square$

$$
\square-25=\square
$$

$$
\square-\square=\square
$$

$\begin{array}{ll}\text { Y In a Three } \\ \text { N } & \text { related add } \\ 0 & \\ 0 & \text { EXAMPLE } \\ 1 & \end{array}$
In the Three-Four puzzle below, fill the empty squares so that only three different numbers make all four statements.

Since $1+2$ is 3 ,
we can also say
Since $1+2$ is 3,
we can also say that 3 is $1+2$. $3=1+2$ means the same thing as $1+2=3$.

We fill the empty squares as shown below.

In each Three-Four puzzle, fill the empty squares so that only three different numbers make all four statements.
42.

43.

44.

28	-		$=$	16
-				
	+	12	$=$	28
$=$				
	+	16	$=$	

46.

48.

45.

24				
+		-		
	+		$=$	87
$=$		$=$		
87	-	63	$=$	

47.

49.

