PRACTICE Solve each problem below by estimating.
42. Circle the number below that is equal to 37×27 without computing the exact answer.
$555 \quad 999 \quad 6,789 \quad 9,999$
43. To estimate the product of 89×203, Grogg rounds both numbers to the nearest hundred, then multiplies. Alex rounds both numbers to the nearest ten before multiplying. How much larger is Grogg's estimate than Alex's?
44. Circle the number below that is equal to 231×533 without computing the exact answer.
$1,234 \quad 12,321 \quad 123,123 \quad 1,234,567$
45. The quotient $24 \frac{1}{3} \div 7 \frac{8}{9}$ is close to what whole number?
45. \qquad
46. Adam estimates $6 \times 704 \approx 10 \times 704=7,040$. Jon estimates $6 \times 704 \approx 6 \times 700=4,200$.
Can you tell which estimate is closer without computing 6×704 ? Explain.
47. Globb estimates the product $49 \times 499 \times 4,999$ by rounding all three numbers to the nearest hundred, then multiplying. What estimate does he get? Is this a good estimate? If so, explain why. If not, how should Globb have rounded instead?

EXAMPLE
Which of the four computations below is not reasonable?

$$
\begin{array}{ll}
681+225=906 & 44 \times 73=3,212 \\
75 \times 18=1,350 & 897+6,041=15,011
\end{array}
$$

We can estimate the value of each sum or product, then compare our estimates to the values above.
$681+225 \approx 700+200=900$, which is very close to 906 . $44 \times 73 \approx 40 \times 70=2,800$, which is pretty close to 3,212 . $75 \times 18 \approx 80 \times 20=1,600$, which is pretty close to 1,350 . $897+6,041 \approx 900+6,000=6,900$, which is less than half of 15,011 .

Our estimate suggests that $897+6,041=15,011$ is not reasonable. A mistake must have been made in the computation.

In fact, $897+6,041=6,938$.

PRACTICE
Place a \checkmark in the box next to every computation that is reasonable. Place a \times next to every computation that is not reasonable. For each, write an estimate that shows why you chose to write a \checkmark or \boldsymbol{x}.
48. $\square 79 \times 107=8,453$
49. $\square 1,297+680=8,097$
50.
$\square 67 \times 1,008=7,236$
51. $\square 532+118=650$
52. $\square 89+778=1,668$
53. $\square 603 \times 90=54,270$
54. $\square 7 \times 986=69,020$
57. $\square 9 \times 11 \times 8=792$
55. $\square 78 \times 215=1,677$
58. $\square 866+1,671=2,567$
59.
56. $\square 977+14,040=15,017$

In a Short Circuit puzzle, each dot is labeled with an expression. The goal is to draw wires that connect each labeled dot on the left to a dot labeled with an equal expression on the right. The wires must not leave the room, cross each other, or pass through walls.

EXAMPLE
Complete the Short Circuit puzzle below by connecting the three pairs of equal expressions.

Since the numbers on the right side of the puzzle are not close in value, we do not need to know the exact values of the products on the left to match them to the numbers on the right. So, we begin by estimating the value of each product on the left.
54×19 is approximately $50 \times 20=1,000$. So, we guess that $54 \times 19=1,026$.
72×33 is approximately $70 \times 30=2,100$. So, we guess that $72 \times 33=2,376$.
56×66 is approximately $60 \times 70=4,200$. So, we guess that $56 \times 66=3,696$.
We must connect 54×19 to the dot labeled 1,026 , 72×33 to the dot labeled 2,376 , and 56×66 to 3,696 .

To avoid crossing wires, we can connect 56×66 to 3,696 by going around the wall in the middle of the room as shown below. We connect the other pairs with straight lines.

Complete each Short Circuit puzzle below.
We recommend you use a pencil.

61.

62.

63.

64.

65.

