

To find the area of any right triangle, we think of the triangle as half of a rectangle.

EXAMPLE Find the area of the right triangle below.

We can arrange two copies of the triangle above to make a rectangle as shown.

The rectangle has an area of $4 \times 8=32 \mathrm{sq} \mathrm{cm}$. The triangle is half the area of the rectangle. So, the area of the triangle is $32 \div 2=16 \mathbf{~ s q ~ c m}$.
43.

45.

44.

43. \qquad
44. \qquad
45. \qquad
46. \qquad
46.

PRACTICE \quad Find the area of each shape below.
47.

48.

47. \qquad
48. \qquad
49.

50.

51. Two right triangles overlap to make the shape below. The area where the triangles overlap is a 4 inch by 4 inch square. What is the area of the whole shape?
49. \qquad
50. \qquad

51. \qquad

In each dot grid below, each dot is 1 unit from its nearest horizontal and vertical neighbor.

EXAMPLE

Find the area of the quadrilateral traced on the dot grid below.

We can split the shape into three parts: two triangles and one square.

Each dot is one unit from its nearest horizontal and vertical neighbor.
The square has an area of $3 \times 3=9$ square units.
Each triangle is half of a 2 by 3 rectangle. So, the combined area of the triangles is $2 \times 3=6$ square units.

All together, the shape has an area of $9+6=15$ square units.

PRACTICE Find the area of the shaded region on each dot grid below.
52.

53.

52. \qquad
53. \qquad
54. \qquad
55. \qquad

PRACTICE
Find the area of the shaded region on each dot grid below.
56.

56.
57. \qquad
58.

59.

58. \qquad
59. \qquad
60. \qquad
61. \qquad

