EXAMPLE

Look for a pattern in the list of products below to fill in the blanks.

$$-3 \times 3 = -9$$

 $-3 \times 2 = -6$
 $-3 \times 1 = -3$
 $-3 \times 0 = 0$
 $-3 \times (-1) =$
 $-3 \times (-2) =$

As we move down the list, the second factors decrease by 1 and the products increase by 3. We continue the pattern to complete the list of products as shown.

$$-3 \times 3 = -9$$
 $-3 \times 2 = -6$
 $-3 \times 1 = -3$
 $-3 \times 0 = 0$
 $-3 \times (-1) =$
 $-3 \times (-2) =$
 $-3 \times 3 = -9$
 $-3 \times 2 = -6$
 $-3 \times 2 = -6$
 $-3 \times 1 = -3$
 $-3 \times 0 = 0$
 $-3 \times (-1) = 3$
 $-3 \times (-2) = 6$

PRACTICE

Look for a pattern in the list of products below to fill in the blanks.

51.
$$-6 \times 2 = -12$$

$$-6 \times 1 = -6$$

$$-6 \times 0 = 0$$

52.
$$-4 \times 2 =$$

We can use the expression $-5 \times (-6+6)$ to show that $-5 \times (-6) = 30$.

Since -6+6=0, and anything times zero is zero, we have

$$-5 \times (-6+6) = -5 \times 0 = 0.$$

Distributing the -5 gives us:

$$-5 \times (-6+6) = 0$$

 $(-5 \times (-6)) + (-5 \times 6) = 0$.

Two quantities that sum to zero are opposites. $(-5 \times (-6)) + (-5 \times 6) = 0$, so $-5 \times (-6)$ is the *opposite* of $5 \times (-6)$.

Since $-5 \times 6 = -30$ and the opposite of -30 is 30, we have $-5 \times (-6) = 30$.

We can use a similar process to show that the product of any two negatives is always positive. So, we have the following rules for multiplying integers:

The product of two numbers with the same sign is always positive.

 $(+)\times(+)=(+)$ $(-)\times(-)=(+)$ $(+)\times(-)=(-)$ $(-)\times(+)=(-)$

The product of two numbers with *opposite* signs is always negative.

PRACTICE

Compute each of the following products.

58.
$$-6 \times (-3) =$$

Find more practice problems at BeastAcademy.com!

In a **Block Mountain** puzzle, each block contains an integer. The number in each block is the product of the two numbers below it.

EXAMPLE

Complete the Block Mountain puzzle below.

We compute the missing entries as shown below.

$$4 \times (-3) = \boxed{-12}$$
.

$$-20 \times (-12) = 240$$

PRACTICE

Complete each Block Mountain puzzle below.

65.

66.

67.

68.

PRACTICE Complete each Block Mountain puzzle below.

69.

70.

71.

72.

73. ★

74. ★

