EXAMPLE Look for a pattern in the list of products below to fill in the blanks.

$$
\begin{aligned}
-3 \times 3 & =-9 \\
-3 \times 2 & =-6 \\
-3 \times 1 & =-3 \\
-3 \times 0 & =0 \\
-3 \times(-1) & = \\
-3 \times(-2) & =-
\end{aligned}
$$

As we move down the list, the second factors decrease by 1 and the products increase by 3. We continue the pattern to complete the list of products as shown.

$$
\begin{aligned}
-3 \times 3 & =-9 \\
-3 \times 2 & =-6 \\
-3 \times 1 & =-3 \\
-3 \times 0 & =0 \\
-3 \times(-1) & =-3+3 \times 3 \\
-3 \times(-2) & =-9 \\
-3 \times 2 & =-6 \\
-3 \times 1 & =-3 \\
-3 \times 0 & =0 \\
-3 \times(-1) & =3 \\
-3 \times(-2) & =6
\end{aligned}{ }^{-3}+3
$$

PRACTICE Look for a pattern in the list of products below to fill in the blanks.
51. $-6 \times 2=-12$
$-6 \times 1=-6$
$-6 \times 0=0$
$-6 \times(-1)=$ $\qquad$
$-6 \times(-2)=$ $\qquad$
$-6 \times(-3)=$ $\qquad$
53.

$$
\begin{aligned}
-7 \times 2 & = \\
-7 \times 1 & = \\
-7 \times 0 & = \\
-7 \times(-1) & = \\
-7 \times(-2) & = \\
-7 \times(-3) & = \\
-7 \times(-4) & =
\end{aligned}
$$

We can use the expression $-5 \times(-6+6)$ to show that $-5 \times(-6)=30$.
Since $-6+6=0$, and anything times zero is zero, we have

$$
-5 \times(-6+6)=-5 \times 0=0
$$

Distributing the -5 gives us:

$$
\begin{array}{r}
-5 \times(-6+6)=0 \\
(-5 \times(-6))+(-5 \times 6)=0 .
\end{array}
$$

Two quantities that sum to zero are opposites. $(-5 \times(-6))+(-5 \times 6)=0$, so $-5 \times(-6)$ is the opposite of $5 \times(-6)$.

Since $-5 \times 6=-30$ and the opposite of -30 is 30 , we have $-5 \times(-6)=30$.
We can use a similar process to show that the product of any two negatives is always positive. So, we have the following rules for multiplying integers:


PRACTICE $\quad$ Compute each of the following products.
55. $-2 \times(-6)=$ $\qquad$
57. $-4 \times 7=$ $\qquad$
59. $7 \times(-5)=$ $\qquad$
61. $-60 \times(-8)=$ $\qquad$
63. $-18 \times(-5)=$ $\qquad$
56. $-13 \times(-1)=$ $\qquad$
58. $-6 \times(-3)=$ $\qquad$
60. $-9 \times(-9)=$ $\qquad$

Find more practice problems at BeastAcademy.com!

In a Block Mountain puzzle, each block contains an integer.
The number in each block is the product of the two numbers below it.

EXAMPLE $\quad$ Complete the Block Mountain puzzle below.


We compute the missing entries as shown below.

$-5 \times 4=-20 . \quad-20 \times(-12)=240$.

$$
4 \times(-3)=-12 \text {. }
$$



PRACTICE $\quad$ Complete each Block Mountain puzzle below.
65.

67.

68.


PRACTICE $\mid$ Complete each Block Mountain puzzle below.
69.

70.

71.

72.

73.

74.


