Division as a Fraction

EXAMPLE Circle the expression below that is equivalent to $18+24 \div (6-3)$. Then, evaluate the circled expression.

 $\frac{18+24}{6-3} \qquad 18+\frac{24}{6-3} \qquad 18+\frac{24}{6}-3 \qquad \frac{18+24}{6}-3$

We can rewrite the division in $18+24 \div (6-3)$ as a fraction. Since division comes before addition in the order of operations, only 24 is divided by the grouped quantity (6-3). So, we have numerator 24 and denominator 6-3.

Therefore, $18+24 \div (6-3)$ is equivalent to $18+\frac{24}{6-3}$.

To evaluate, we compute the denominator of the fraction first, then divide, then add:

$$18 + \frac{24}{6-3} = 18 + \frac{24}{3}$$
$$= 18 + 8$$
$$= 26.$$

Connect each expression on the left with its equivalent expression on the right. Then, evaluate the matched expression on the right. PRACTICE

- 35. $(30-20) \div (5-3)$
- 36. $(30-20) \div 5-3$
- 37. $30 - 20 \div (5 - 3)$

$$30 - \frac{20}{5} - 3 =$$

$$30 - \frac{20}{5-3} =$$

$$\frac{30-20}{5-3} =$$

$$\frac{30-20}{5}-3=$$

EXPRESSION Division as a Fraction

Remember, when evaluating expressions, we apply the following order of operations:

- Grouped expressions (numerators, denominators, and expressions inside parentheses or absolute value bars)
- 2. Exponents
- 3. Multiplication and division (working from left to right)
- 4. Addition and subtraction (working from left to right)

PRACTICE Evaluate each expression below.

- **39.** $\frac{6+3}{3}+2=$ _____ **40.** $5 - \frac{8}{6(4)} =$ _____
- **41.** $3 \cdot \frac{7+9}{2} =$ **42.** $\frac{3 \cdot 7 + 9}{2} =$
- **44.** $\frac{20^2}{2} + \frac{20}{2^2} + \left(\frac{20}{2}\right)^2 =$ _____ **43.** $\frac{-3(4)}{(6-4)^2} =$
- **46.** $\frac{6^2}{7+5} \cdot \frac{7-6-5}{2} =$ **45.** $17-2\left(\frac{1+11}{2\cdot 3}\right) =$ _____

47. $\frac{8(7-3)^2}{-(3-7)^3} =$ _____ **48.** $\left(\frac{5+7+9}{2^5-5^2}\right)^3 =$ _____ A *term* is a number, a variable, or a product of numbers and variables. Terms with the same variables are called *like terms*. For example, 3x and 6x are like terms, and -2y and y are like terms. However, 5x and 5y are not like terms.

Numbers without variables, such as 4 and -7, are also like terms.

In a **Like Terms Link** puzzle, each pair of like terms is connected by a path, as shown in the solved example below.

		5 <i>x</i>	2 <i>n</i>	-6
	8 <i>n</i>			
		3 <i>x</i>	d	
-d				
3				

For example, 4a² and 3a² are *like terms*, but 4a² and 3a are not.

Like terms

must also have the same

exponents.

Paths may not travel diagonally, cross another path, or pass *through* a square that contains a term.

PRACTICE

Solve each Like Terms Link puzzle below. We recommend using a pencil.

Print more Like Terms Link puzzles at BeastAcademy.com.

49.

12 <i>a</i>			
	5 <i>c</i>	6 <i>b</i>	2 <i>a</i>
	b		6 <i>c</i>

51.					
		13 <i>t</i>	-5r		
		-4 <i>s</i>			
	-4r			2 <i>t</i>	-5 <i>s</i>

50.				7 <i>x</i>
		-8	4 <i>y</i>	
			-3 <i>x</i>	
	8 y			4

52.			11 <i>u</i>	
	11		2 <i>v</i>	-2 <i>u</i>
		w		
			2	
		2w	-9v	

