In an *arithmetic sequence*, the same amount is always added to get from one term to the next.

The amount that is added to get to each next term is called the *common difference*.

EXAMPLE

Fill in the blanks to complete the arithmetic sequence below.

We begin by finding the common difference. To get from 19 to 67 in this sequence, we add the common difference 4 times.

Adding the common difference 4 times adds a total of 67-19=48. So, the common difference is $48 \div 4 = 12$. We use this to find the missing terms, as shown.

PRACTICE Find the common difference for each arithmetic sequence below.

35.	7, 16, 25, 34, 43,	36.	-33, -25, -17, -9, -1,	35
				36
37.	29, 26, 23, 20, 17,	38.	, 21,, 35,,	37
				38
39.	74,,, 41,,	40.	30,,,, 32 ¹ / ₂ ,	39
			2	40

Beast Academy Practice 5C

Excerpt from Beast Academy 5C. (C) 2016 www.BeastAcademy.com

Arithmetic Sequences, Parts

	PRACTICE Fill in the blanks to complete each arithmetic sequence below.			
41.	19,,, 64,, 109			
42.	98,, 112,,,, 140			
43.	,,,, 32, 30 ¹ / ₂ ,			
44.	10,,,,, 22,			
	PRACTICE Answer each question below.			
45.	What is the common difference of an arithmetic sequence whose first term is 25 and whose tenth term is 115?	45		
46.	What is the common difference of an arithmetic sequence whose 23^{rd} term is $\frac{1}{3}$ and whose 25^{th} term is $\frac{1}{2}$?	46		
47.	An arithmetic sequence has 10^{th} term 4 and 30^{th} term 68. What is the 20^{th} term of the sequence?	47		
48. ★	An arithmetic sequence has five terms. The first term is 40, and the sum of all five terms is 80. What is the common difference?	48		

Excerpt from Beast Academy 5C. (C) 2016 www.BeastAcademy.com

Arithmetic Sequences, Part 1

EXAMPLE

What is the 50th term of the arithmetic sequence below?

2, 5, 8, 11, 14, 17, ...

The first term of the arithmetic sequence is 2 and the common difference is 3.

+3 +3 +3 +3 +3 2, 5, 8, 11, 14, 17, ...

To get to the 2^{nd} term, we add 1 three to 2. To get to the 3^{rd} term, we add 2 threes to 2. To get to the 4^{th} term, we add 3 threes to 2.

To get to the 50th term, we add 49 threes to 2. So, the 50th term is 2+49(3) = 2+147 = 149.

PRACTICE	Find the value of the missing term listed for				
INAUTIOL	each arithmetic sequence below.				

49.	15, 19, 23, 27, 31,, <u>10th</u>	50.	-11,	-6,	-1,	4,	9,, <u>40th</u>
-----	---	-----	------	-----	-----	----	----------------------------

51. 5, -2, -9, -16, -23, ..., <u>15th</u> **52.** -29, -19, -9, 1, 11, ..., <u>100th</u>

PRACTICE Answer each question below.

- **53.** What is the 13th term of an arithmetic sequence whose first term is 9 **53.** _____
- **54.** What is the first term of an arithmetic sequence whose 100^{th} term is **54.** _____ 40 and whose common difference is $\frac{1}{3}$?
- **55.** The 12th and 15th terms of an arithmetic sequence are 85 and 106.**55.**What is the first term of the sequence?

Arithmetic Sequences, Part 1

Write an expression for the n^{th} term of the arithmetic EXAMPLE sequence below. You can check your answer -1. 4. 9. 14. 19. 24. ... by plugging in values for n!The first term of the sequence is -1 and the common difference is 5. For example, we know the 3rd +5 +5 +5 +5 +5 term is 9. So, we can plug in n=3 to get 5(3)-6=9.√ To get the 2nd term, we add 1 five to -1. To get the 3rd term, we add 2 fives to -1. To get the 4th term, we add 3 fives to -1. To get the n^{th} term, we add (n-1) fives to -1. So, the n^{th} term is -1 + (n-1)5. Distributing the 5 and simplifying gives -1 + (n-1)5 = -1 + 5n - 5=5n-6. Write a simplified expression for the n^{th} term PRACTICE of each arithmetic sequence below. 18, 24, 30, 36, ..., ____^{nth} 56. **58.** -13, -5, 3, ..., _______ **59.** $\frac{9}{4}, \frac{5}{2}, \frac{11}{4}, \dots, \frac{1}{n^{\text{th}}}$ PRACTICE Answer each question below. Simplify all expressions. An arithmetic sequence has first term *a* and common difference 3. **60**. 60. Write an expression for the 20th term of the sequence. 61. An arithmetic sequence has first term 6 and common difference d. 61. Write an expression for the 101st term of the sequence. In an arithmetic sequence, the 1st term is 20, the 2nd term is 32, and **62.** k =_____ 62. * the k^{th} term is 500. What is k?

Beast Academy Practice 5C