In an arithmetic sequence, the same amount is always added to get from one term to the next.

The amount that is added to get to each next term is called the common difference.

EXAMPLE

Fill in the blanks to complete the arithmetic sequence below.

We begin by finding the common difference. To get from 19 to 67 in this sequence, we add the common difference 4 times.

Adding the common difference 4 times adds a total of $67-19=48$. So, the common difference is $48 \div 4=12$. We use this to find the missing terms, as shown.

PRACTICE Find the common difference for each arithmetic sequence below.
35. 7, 16, 25, 34, 43, ...
36. $-33,-25,-17,-9,-1, \ldots$
38. _, 21, _, 35, _, ...
37. $29,26,23,20,17, \ldots$
39. 74 , \qquad , 41, \qquad , ...
40. 30 , \qquad $32 \frac{1}{2}, \ldots$
39. \qquad
40. \qquad

PRACTICE \quad Fill in the blanks to complete each arithmetic sequence below.
41. 19, \qquad , \qquad , 64, \qquad , \qquad , 109
42. 98, \qquad 112, \qquad , \qquad , \qquad 140
43. \qquad , \qquad , \qquad , \qquad , 32, $30 \frac{1}{2}$, \qquad
44. 10 , \qquad , \qquad , \qquad , \qquad , 22, \qquad

PRACTICE \quad Answer each question below.
45. What is the common difference of an arithmetic sequence whose first
45. \qquad term is 25 and whose tenth term is 115 ?
46. What is the common difference of an arithmetic sequence whose $23^{\text {rd }}$
46. \qquad term is $\frac{1}{3}$ and whose $25^{\text {th }}$ term is $\frac{1}{2}$?
47. An arithmetic sequence has $10^{\text {th }}$ term 4 and $30^{\text {th }}$ term 68 . What is the 47. \qquad $20^{\text {th }}$ term of the sequence?
48. An arithmetic sequence has five terms. The first term is 40 , and the
48. \qquad sum of all five terms is 80 . What is the common difference?

Arithmetic Sequences, Part I
EXAMPLE What is the $50^{\text {th }}$ term of the arithmetic sequence below?

$$
2,5,8,11,14,17, \ldots
$$

The first term of the arithmetic sequence is 2 and the common difference is 3 .

To get to the $2^{\text {nd }}$ term, we add 1 three to 2 .
To get to the $3^{\text {rd }}$ term, we add 2 threes to 2.
To get to the $4^{\text {th }}$ term, we add 3 threes to 2 .
To get to the $50^{\text {th }}$ term, we add 49 threes to 2 .
So, the $50^{\text {th }}$ term is $2+49(3)=2+147=149$.

PRACTICE

Find the value of the missing term listed for each arithmetic sequence below.
49. $15,19,23,27,31, \ldots, \frac{}{10^{\text {th }}}$
51. $5,-2,-9,-16,-23, \ldots, \frac{}{15^{\text {th }}}$
50. $-11,-6,-1,4,9, \ldots, \frac{}{40^{\text {th }}}$

PRACTICE Answer each question below.
53. What is the $13^{\text {th }}$ term of an arithmetic sequence whose first term is 9
53. \qquad and whose common difference is 8 ?
54. What is the first term of an arithmetic sequence whose $100^{\text {th }}$ term is
54. \qquad 40 and whose common difference is $\frac{1}{3}$?
55. The $12^{\text {th }}$ and $15^{\text {th }}$ terms of an arithmetic sequence are 85 and 106.
55. \qquad What is the first term of the sequence?

$$
\text { Arithmetic Sequences, Part } 1
$$

EXAMPLE
Write an expression for the $n^{\text {th }}$ term of the arithmetic sequence below.

$$
-1,4,9,14,19,24, \ldots
$$

The first term of the sequence is $\mathbf{- 1}$ and the common difference is 5 .

To get the $2^{\text {nd }}$ term, we add 1 five to -1 .
To get the $3^{\text {rd }}$ term, we add 2 fives to -1 .
To get the $4^{\text {th }}$ term, we add 3 fives to -1 .
To get the $n^{\text {th }}$ term, we add ($n-1$) fives to -1 .
So, the $n^{\text {th }}$ term is $-1+(n-1) 5$. Distributing the 5 and simplifying gives

$$
\begin{aligned}
-1+(n-1) 5 & =-1+5 n-5 \\
& =5 n-6 .
\end{aligned}
$$

PRACTICE

 Write a simplified expression for the $n^{\text {th }}$ term of each arithmetic sequence below.
56. 18, 24, 30, 36, ..., $n^{n^{\text {n }}}$
57. $4,19,34,49, \ldots$, \qquad
58.

59. $\frac{9}{4}, \frac{5}{2}, \frac{11}{4}, \ldots, \square n^{\text {th }}$

PRACTICE Answer each question below. Simplify all expressions.

60. An arithmetic sequence has first term a and common difference 3 .
61.

Write an expression for the $20^{\text {th }}$ term of the sequence.
61. An arithmetic sequence has first term 6 and common difference d.
61.

Write an expression for the $101^{\text {st }}$ term of the sequence.
62. In an arithmetic sequence, the $1^{\text {st }}$ term is 20 , the $2^{\text {nd }}$ term is 32 , and
62. $k=$ \qquad the $k^{\text {th }}$ term is 500 . What is k ?

