When comparing two positive numbers, the

 larger number always has the larger square.EXAMPLE Is $\sqrt{10}$ more or less than 3.5 ?

Since $\sqrt{10}$ and 3.5 are both positive, we can compare $\sqrt{10}$ and 3.5 by comparing their squares. $\sqrt{10}$ is the number we square to get 10 . So, $(\sqrt{10})^{2}=10$.

We have $3.5^{2}=12.25$.
Since $10<12.25$, we know $\sqrt{10}$ is less than 3.5.

PRACTICE
 Fill each circle below with < or > to indicate which expression is greater.

51.

53. $200 \backsim \sqrt{36,000}$
55.

57. $\sqrt{\frac{1}{2}} \longrightarrow \frac{2}{3}$

PRACTICE

Answer each question below.
59. For how many integer values of a is $\sqrt{\frac{1}{a}}>\frac{1}{2}$?
60. Is $\sqrt{250}$ closer to $\sqrt{100}$ or to $\sqrt{400}$?
61. Round $\sqrt{30.3}$ to the nearest whole number.
52.

54.

56.

58.

59. \qquad
60. \qquad
61. \qquad

EXAMPLE \quad Which is greater, $2 \sqrt{3}$ or $3 \sqrt{2}$?
The expression $2 \sqrt{3}$ means $2 \cdot \sqrt{3}$.
To compare $2 \sqrt{3}$ to $3 \sqrt{2}$, we can compare their squares.

$$
\begin{aligned}
& (2 \sqrt{3})^{2} & & (3 \sqrt{2})^{2} \\
= & 2 \cdot \sqrt{3} \cdot 2 \cdot \sqrt{3} & = & 3 \cdot \sqrt{2} \cdot 3 \cdot \sqrt{2} \\
= & (2 \cdot 2) \cdot(\sqrt{3} \cdot \sqrt{3}) & = & (3 \cdot 3) \cdot(\sqrt{2} \cdot \sqrt{2}) \\
= & 4 \cdot 3 & & =9 \cdot 2 \\
= & 12 & = & 18
\end{aligned}
$$

Since 18 is greater than 12 , $3 \sqrt{2}$ is greater than $2 \sqrt{3}$.

PRACTICE \quad Answer each question below.
62. \qquad
62. What is the area in square centimeters of a square whose sides are $4 \sqrt{5}$ centimeters long?
63. Circle every expression below that equals $3 \sqrt{8}$.
$\sqrt{72}$
$2 \sqrt{18}$
$4 \sqrt{6}$
$5 \sqrt{3}$
$6 \sqrt{2}$
$\frac{17}{2}$
64. Circle every expression below that equals $\sqrt{500}$.
$25 \sqrt{2}$
$20 \sqrt{5}$
$10 \sqrt{5}$
$8 \sqrt{15}$
$5 \sqrt{20}$
$2 \sqrt{125}$
65. Order $11, \frac{\sqrt{500}}{2}$, and $2 \sqrt{30}$ from least to greatest.
65. \qquad $<$ \qquad $<$ \qquad
66. If n is an integer, and $13<n \sqrt{11}<14$, then what is n ?
66. $n=$ \qquad

PRACTICE \mid Write each expression below as an integer.
67. $\sqrt{11^{4}}=$ \qquad
69. $\sqrt{9^{3}}=$ \qquad 70. $\sqrt{4^{5}}=$ \qquad
71. $\sqrt{3^{2} \cdot 2^{8}}=$ \qquad
73. $\sqrt{6^{2} \cdot 15^{2}}=$ \qquad 74. $\sqrt{12^{3} \cdot 3}=$ \qquad
68. $\sqrt{7^{6}}=$ \qquad
72. $\sqrt{3^{4} \cdot 5^{2}}=$ \qquad
75. If $\sqrt{2^{n}}=64$, then what is n ?
76. What is the units digit of $\sqrt{3^{100}}$?
75. $n=$ \qquad
76. \qquad

EXAMPLE Compute $\sqrt{6 \cdot 24}$.

We multiply $6 \cdot 24=144$, then find the square root.

$$
\begin{aligned}
& \sqrt{6 \cdot 24}=\sqrt{144} \\
&=12 . \\
&- \text { or }
\end{aligned}
$$

Using prime factorization, we have

$$
\begin{aligned}
\sqrt{6 \cdot 24} & =\sqrt{(2 \cdot 3) \cdot(2 \cdot 2 \cdot 2 \cdot 3)} \\
& =\sqrt{(2 \cdot 2 \cdot 3) \cdot(2 \cdot 2 \cdot 3)} \\
& =\sqrt{(2 \cdot 2 \cdot 3)^{2}} \\
& =2 \cdot 2 \cdot 3 \\
& =12 .
\end{aligned}
$$

PRACTICE Solve each problem below.
77. $\sqrt{4 \cdot 9}=$ \qquad 78. $\sqrt{3 \cdot 27}=$ \qquad
79. $\sqrt{32 \cdot 8}=$ \qquad 80. $\sqrt{21 \cdot 84}=$ \qquad
81. $\sqrt{135 \cdot 15}=$ \qquad 82. $\sqrt{2,916}=$ \qquad
83. What is the side length in centimeters of a square that has the same area as the rectangle below?
84. The prime factorization of $1,382,976$ is $2^{6} \cdot 3^{2} \cdot 7^{4}$. What is the prime
84. \qquad factorization of $\sqrt{1,382,976}$?
85. The expression $\sqrt{540 \cdot k}$ is equal to an integer for some positive
83. \qquad
 8
85. $\star \quad$ integer k. What is the smallest possible value of k ?
\qquad

