Comparing ROOT

When comparing two positive numbers, the larger number always has the larger square.

EXAMPLE Is $\sqrt{10}$ more or less than 3.5?

Since $\sqrt{10}$ and 3.5 are both positive, we can compare $\sqrt{10}$ and 3.5 by comparing their squares.

 $\sqrt{10}$ is the number we square to get 10. So, $(\sqrt{10})^2 = 10$.

We have $3.5^2 = 12.25$.

Since 10 < 12.25, we know $\sqrt{10}$ is **less than** 3.5.

PRACTICE

Fill each circle below with < or > to indicate which expression is greater.

51.
$$2 \left(\right) \sqrt{5}$$

52.
$$\sqrt{3,599}$$
 60

53.
$$200) \sqrt{36,000}$$

54.
$$\sqrt{250}$$
 16

55. 50
$$\sqrt{49 \cdot 51}$$

56. 111
$$\sqrt{12,345}$$

57.
$$\sqrt{\frac{1}{2}}$$
 $\frac{2}{3}$

58.
$$\frac{7}{8}$$
 $\sqrt{\frac{3}{4}}$

PRACTICE

Answer each question below.

59. For how many integer values of a is $\sqrt{\frac{1}{a}} > \frac{1}{2}$?

59. _____

60. Is $\sqrt{250}$ closer to $\sqrt{100}$ or to $\sqrt{400}$?

60. _____

61. Round $\sqrt{30.3}$ to the nearest whole number.

61. _____

EXAMPLE

Which is greater, $2\sqrt{3}$ or $3\sqrt{2}$?

QUARE comparing

The expression $2\sqrt{3}$ means $2 \cdot \sqrt{3}$.

To compare $2\sqrt{3}$ to $3\sqrt{2}$, we can compare their squares.

$$(2\sqrt{3})^{2}$$

$$= 2 \cdot \sqrt{3} \cdot 2 \cdot \sqrt{3}$$

$$= (2 \cdot 2) \cdot (\sqrt{3} \cdot \sqrt{3})$$

$$= 4 \cdot 3$$

$$= 12$$

$$(3\sqrt{2})^{2}$$

$$= 3 \cdot \sqrt{2} \cdot 3 \cdot \sqrt{2}$$

$$= (3 \cdot 3) \cdot (\sqrt{2} \cdot \sqrt{2})$$

$$= 9 \cdot 2$$

$$= 18$$

We read $3\sqrt{2}$ as "three root two," and $2\sqrt{3}$ as "two root three."

Since 18 is greater than 12, $3\sqrt{2}$ is greater than $2\sqrt{3}$.

PRACTICE

Answer each question below.

62. What is the area in square centimeters of a square whose sides are $4\sqrt{5}$ centimeters long?

Circle every expression below that equals $3\sqrt{8}$. 63.

$$\sqrt{72}$$

$$\sqrt{72}$$
 $2\sqrt{18}$ $4\sqrt{6}$ $5\sqrt{3}$ $6\sqrt{2}$ $\frac{17}{2}$

64. Circle every expression below that equals $\sqrt{500}$.

$$25\sqrt{2}$$
 $20\sqrt{5}$ $10\sqrt{5}$ $8\sqrt{15}$

Order 11, $\frac{\sqrt{500}}{2}$, and $2\sqrt{30}$ from least to greatest. **65.** ____<__<___<___<___ 65.

If *n* is an integer, and $13 < n\sqrt{11} < 14$, then what is *n*? 66.

EXAMPLE Compute $\sqrt{25^3}$.

We could compute $25^3 = 25 \cdot 25 \cdot 25$ and then look for the square root of the result.

Or, we can use the fact that 25 = 5.5 to help us find the square root of 253.

$$\sqrt{25^3} = \sqrt{25 \cdot 25 \cdot 25}
= \sqrt{(5 \cdot 5) \cdot (5 \cdot 5) \cdot (5 \cdot 5)}
= \sqrt{(5 \cdot 5 \cdot 5) \cdot (5 \cdot 5 \cdot 5)}
= \sqrt{(5 \cdot 5 \cdot 5)^2}
= 5 \cdot 5 \cdot 5
= 125$$

So, the square root of 25^3 is **125**.

Factoring a number can help us find its square root.

PRACTICE

Write each expression below as an integer.

67.
$$\sqrt{11^4} =$$

68.
$$\sqrt{7^6} =$$

69.
$$\sqrt{9^3} =$$

70.
$$\sqrt{4^5} =$$

71.
$$\sqrt{3^2 \cdot 2^8} =$$

72.
$$\sqrt{3^4 \cdot 5^2} =$$

73.
$$\sqrt{6^2 \cdot 15^2} =$$

74.
$$\sqrt{12^3 \cdot 3} =$$

75. If
$$\sqrt{2^n} = 64$$
, then what is *n*?

What is the units digit of $\sqrt{3^{100}}$? **76.**

We multiply $6 \cdot 24 = 144$, then find the square root.

$$\sqrt{6 \cdot 24} = \sqrt{144}$$
$$= \mathbf{12}.$$

Using prime factorization, we have

$$\sqrt{6 \cdot 24} = \sqrt{(2 \cdot 3) \cdot (2 \cdot 2 \cdot 2 \cdot 3)}$$

$$= \sqrt{(2 \cdot 2 \cdot 3) \cdot (2 \cdot 2 \cdot 3)}$$

$$= \sqrt{(2 \cdot 2 \cdot 3)^2}$$

$$= 2 \cdot 2 \cdot 3$$

$$= 12.$$

PRACTICE | Solve each problem below.

77.
$$\sqrt{4 \cdot 9} =$$

78.
$$\sqrt{3\cdot 27} =$$

79.
$$\sqrt{32 \cdot 8} =$$

80.
$$\sqrt{21 \cdot 84} =$$

81.
$$\sqrt{135 \cdot 15} =$$

82.
$$\sqrt{2,916} =$$

83. What is the side length in centimeters of a square that has the same area as the rectangle below?

84. The prime factorization of 1,382,976 is $2^6 \cdot 3^2 \cdot 7^4$. What is the prime factorization of $\sqrt{1,382,976}$?

85. The expression $\sqrt{540 \cdot k}$ is equal to an integer for some positive integer k. What is the smallest possible value of k?