We can use multiplication to solve division problems.

To divide 7⁵ by 7³, we look for the power of 7 we multiply by 7^3 to get 7^5 .

Since $7^2 \cdot 7^3 = 7^5$, we know $7^5 \div 7^3 = 7^2$.

We can write the quotient as a fraction. $7^5 \div 7^3 = \frac{7^5}{7^3}$.

Writing the powers as products, we cancel three 7's in the numerator and denominator to get

$$\frac{7^5}{7^3} = \frac{\cancel{\cancel{7}} \cdot \cancel{\cancel{7}} \cdot \cancel{\cancel{7}} \cdot \cancel{\cancel{7}}}{\cancel{\cancel{7}} \cdot \cancel{\cancel{7}}} = 7 \cdot 7 = \mathbf{7}^2.$$

As long as a is not zero, to divide a^m by a^n , we subtract the exponents and keep the same base.

$$a^m \div a^n = a^{m-n}$$
. As a fraction, $\frac{a^m}{a^n} = a^{m-n}$.

PRACTICE

Answer each question below.

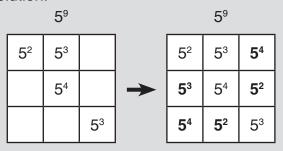
34. What power of 5 is equal to $5^{18} \div 5^{6}$? 34.

35. What power of 2 can we divide 26 by to get 22? 35.

36. Circle the expression below that is *not* equal to 6⁵.

$$6^7 \div 6^2$$

$$6^2 \cdot 6^3$$
 $6^2 + 6^3$ $2^5 \cdot 3^5$


$$\frac{6^{11}}{6^6}$$

What power of 3 is equal to $\frac{3^{12}}{3^4 \cdot 3^3}$? 37.

37.

In a **Product Square** puzzle, the product of the three powers in each row and column match the product given above the square.

Below is a Product Square example and its solution.

PRACTICE

Fill each missing entry in the Product Squares below with a power so that each row and column have the given product.

38. Write each entry as a power of 2.

2²¹
2⁶ 2⁶
2⁸ 2⁸

39. Write each entry as a *different* positive power of 7.

7¹⁵

7⁶ 7⁷

7⁴

40. Write each entry as a perfect square.

120²

2² 3²

1²

4²

41. Write each entry as a power of 2, 3, or 6 with a positive exponent.

2² 6²

 $2^8 \cdot 3^6$

*

Zero and Wegazive

We can use **zero** as an exponent. Any power with an exponent of 0 is equal to 1. This works nicely with our exponent rules. For example,

$$7^4 \div 7^4 = 7^{4-4} = 7^0 = 1$$
.

Exponents can also be negative.

We can use exponent rules to see how to define negative exponents. For example,

$$7^3 \div 7^5 = \frac{7^3}{7^5} = \frac{\cancel{\cancel{7} \cdot \cancel{\cancel{7} \cdot \cancel{\cancel{7}}}}}{\cancel{\cancel{7} \cdot \cancel{\cancel{7} \cdot \cancel{\cancel{7}}}}} = \frac{1}{\cancel{\cancel{7} \cdot \cancel{\cancel{7}}}} = \frac{1}{\cancel{\cancel{7} \cdot \cancel{\cancel{7}}}} = \frac{1}{\cancel{\cancel{7} \cdot \cancel{\cancel{7}}}}.$$

Our exponent rules for division suggest that

$$7^3 \div 7^5 = 7^{3-5} = 7^{-2}$$
.

So, we define $7^{-2} = \frac{1}{7^2}$.

As long as a is not zero, a^{-n} is used to represent the reciprocal of a^n .

$$a^{-n} = \frac{1}{a^n}.$$

PRACTICE Answer each

Answer each question below.

42. Write 5^{-2} as a fraction in simplest form.

42. _____

43. Write 2⁻⁵ as a fraction in simplest form.

43. _____

44. Write $\frac{1}{11^3}$ as a power of 11.

44. _____

45. Write $\frac{1}{25^2}$ as a power of 5.

45. _____

PRACTICE Answer each question below.

46. Simplify
$$(5^4 \cdot 5^{-4}) + (4^3 \cdot 4^{-3}) + (3^2 \cdot 3^{-2})$$
.

48. Express
$$2^{-3}+3^{-2}$$
 as a fraction in simplest form.

49. Write
$$(2^{-2}) - (2^{-3}) - (2^{-4})$$
 as a fraction in simplest form.

50. For how many integer values of
$$n$$
 is 2^n between 3^{-1} and 3^{-3} ?

52. Write
$$2^{-4} \cdot 6^2 \cdot 5^{-3}$$
 as a decimal.